Production of macroaggregates from dissolved exopolymeric substances (EPS) of bacterial and diatom origin.
نویسندگان
چکیده
Exopolymeric substances (EPS) isolated from a pure culture of the marine bacterium Marinobacter sp. and the marine diatom Skeletonema costatum (axenic) were partially purified, chemically characterized and used as dissolved organic matter (DOM) for the production of macroaggregates. The role of organic particles such as transparent exopolymeric particles (TEP) and Coomassie stained particles (CSP) in the production of macroaggregates was experimentally assessed. Three experimental rolling tanks containing sterile medium with: (1) EPS, (2) EPS + live diatom cells and (3) EPS + killed bacteria, and three control tanks without any added EPS were used for macroaggregate production. Changes in abundance and average size of macroaggregates were monitored using image analysis, whereas TEP and CSP were enumerated microscopically. In the presence of microbial EPS, macroaggregates of a size of 23-35 mm(2) were produced. Aggregate size and abundance considerably varied with both time and source of EPS. No correlation was observed for macroaggregate size and abundance with either TEP or CSP. One-way ANOVA demonstrated significant differences in the variance of particle abundance and size in tanks having only EPS or EPS in combination with live diatom cells. Our data suggest that production of macroaggregates was influenced by polymer chemistry and surface properties of colliding particles, whereas TEP and CSP concentrations were influenced by molecular weight of EPS and the presence of growing cells. Interestingly, macroaggregates were formed in the near absence of TEP and CSP, highlighting the role of other unknown processes in the transformation of DOM to particulate organic matter (POM) in aquatic environments.
منابع مشابه
Transparent Exopolymeric Particles (TEP) Selectively Increase Biogenic Silica Dissolution From Fossil Diatoms as Compared to Fresh Diatoms
Diatom production is mainly supported by the dissolution of biogenic silica (bSiO2) within the first 200m of the water column. The upper oceanic layer is enriched in dissolved and/or colloidal organic matter, such as exopolymeric polysaccharides (EPS) and transparent exopolymeric particles (TEP) excreted by phytoplankton in large amounts, especially at the end of a bloom. In this study we explo...
متن کاملDifferent Types of Diatom-Derived Extracellular Polymeric Substances Drive Changes in Heterotrophic Bacterial Communities from Intertidal Sediments
Intertidal areas support extensive diatom-rich biofilms. Such microphytobenthic (MPB) diatoms exude large quantities of extracellular polymeric substances (EPS) comprising polysaccharides, glycoproteins and other biopolymers, which represent a substantial carbon pool. However, degradation rates of different EPS components, and how they shape heterotrophic communities in sediments, are not well ...
متن کاملExopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis.
Bacterial exopolymeric substances (EPS) are molecules released in response to the physiological stress encountered in the natural environment. EPS are structural components of the extracellular matrix in which cells are embedded during biofilm development. The chemical nature and functions of these EPS are dependent on the genetic expression of the cells within each biofilm. Although some bacte...
متن کاملRole of exopolymeric substances (EPS) in the stability of the biofilm of Thiomonas arsenivorans grown on a porous mineral support.
Biochemical methods were selected to evaluate the role of exopolymeric substances in the stability of biofilms used in bioremediation processes. Biofilms of Thiomonas arsenivorans formed on pozzolana were thus treated with pronase (protein target), lectins (Con A or PNA), calcofluor or periodic acid (polysaccharides target), DNase (DNA target), and lipase (triglycerides target). Neither proteas...
متن کاملEffect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton
Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species (Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology ecology
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2005